Satellitenkonstellation
Eine Anordnung von Satelliten, die einem gemeinsamen Ziel dienen. Eine Satellitenkonstellation, bei denen die Satelliten mit einem konstanten Abstand in dieselbe Richtung fliegen, wird als Satellitenformation bezeichnet. Beispiele sind die Tandem-Mission von TerraSAR-X und TanDEM-X und der A-Train der NASA. In vielen Fällen wird eine Satellitenkonstellation zur globalen Abdeckung eines Dienstes (z. B. Satellitennavigation, Satellitenkommunikation und andere) genutzt. Eine globale Abdeckung bedeutet dabei, dass die Ausleuchtungszonen der Satelliten die Erdoberfläche komplett abdecken, so dass jederzeit an jedem Ort auf der Erde ein Satellit erreichbar ist (jedoch noch abhängig von den gegebenen lokalen Bedingungen).
Die Herausforderung beim Design einer Konstellation besteht in der Auswahl der entsprechenden Parameter. Dabei können die verschiedenen Orbitparameter, wie Orbithöhe, -form, Exzentrizität, Inklination usw., für die Satelliten einer Konstellation unterschiedlich sein, was zur Folge hat, dass die geometrische Komplexität der Konstellation ansteigt.
LEO-Konstellationen
Diese Art von Satellitenkonstellationen ist für niedrige Erdumlaufbahnen gedacht. Hintergrund ist die steigende Strahlungsbelastung, die mit zunehmender Orbithöhe auf den Satelliten einwirkt. Dies erhöht die Entwicklungs- und Produktionskosten und/oder verringert die Lebensdauer eines Satelliten oder einer Satellitenkonstellation. Die zwei bekanntesten Konstellationen mit kreisförmigen Orbits sind die Walker- und die polare Satellitenkonstellation.
Die Walker-Konstellation beschreibt die Verteilung der Satelliten in den verschiedenen kreisförmigen Orbits. Die Orbits besitzen dabei alle die gleiche Bahnneigung (Inklination) relativ zur Referenzebene. Typischerweise ist die Referenzebene die Äquator-Ebene.
Eine polare Konstellation zeichnet sich durch einen Inklinationswinkel von ungefähr 90° aus, d.h. die Satelliten der Konstellation überqueren die Polkappen. Eine Walker Delta Pattern Constellation mit einer Inklination von annähernd 90° ist demzufolge eine polare Konstellation. Hierdurch wird eine Abdeckung der polaren Gebiete erreicht, die jedoch aus kommerzieller Sicht eher unbedeutend sind (zu geringe Besiedelung). Für wissenschaftliche Forschungsmissionen zu den Polkappen sind solche Kommunikationssysteme jedoch von hohem Interesse.
Hochelliptische Konstellationen
Eine Molnija-Konstellation zeichnet sich durch die Verwendung des Orbittyps Molnija-Orbit (hochelliptischer Orbit) aus. Ein Molnija-Orbit besitzt den Vorteil, dass ein Satellit eine relativ lange Zeit einen Service unterhalb des Gebietes des Apogäums anbieten kann. Dieser Typ wurde für russische Kommunikationssatelliten verwendet, da die Sendeleistung von geostationären Satelliten für die nördlichen Breiten Russlands zu groß wäre und eine Kommunikationsverbindung zu einem Satelliten einer polaren Konstellation zu kurzzeitig ist bzw. zu viele Satelliten benötigen würde. Ein Beispiel einer solchen Konstellation ist das Satellite Data System (SDS) (siehe Abbildung rechts) der Streitkräfte der Vereinigten Staaten, das seit 1976 beginnend mit SDS-1 durch diese verwendet wird.
MEO-Satellitenkonstellationen
MEO-Konstellationen werden vorzugsweise von Navigationssatellitensystemen genutzt. Aufgrund der Höhe werden weniger Satelliten als im LEO, dafür aber eine höhere Sendeleistung benötigt. Des Weiteren befinden sich diese Systeme im Van-Allen-Gürtel, was zur Folge hat, dass diese für eine höhere Strahlendosis ausgelegt werden müssen.
Geostationäre Satellitenkonstellationen
Der Vorteil an der Stationierung einer Satellitenkonstellation im GEO ist die minimale Satellitenanzahl, die zu einer globalen Serviceabdeckung benötigt wird. Theoretisch wären maximal zwei Satelliten notwendig, um alle Orte auf der Erde erreichen zu können (wenn die Erde eine perfekte und glatte Kugel wäre). Praktisch allerdings ist an den Schnittstellen wie auch in hohen Breiten eine Erreichbarkeit nicht gewährleistet ist, aufgrund der örtlichen Gegebenheiten wie Hügel, Berge, Gebäude und andere Hindernisse. Auch spielt die Sendeleistung eine wesentliche Rolle, so dass die russischen Kommunikationssatelliten keine GEO-Stationierung, sondern einen Molnija-Orbit nutzten. Aus diesem Grund besitzen GEO-Konstellationen mindestens drei Satelliten (siehe Abbildung). Die NASA nutzt solch einen Konstellationstyp zur Unterstützung ihrer Raumfahrtmissionen im LEO. Diese Konstellation ist als TDRS-System (engl.: Tracking and Data Relay Satellite System) bekannt.
Satellitenkonstellationen finden in verschiedenen Bereichen ihre Anwendung, wie z. B.:
- Audio-Kommunikation: Globalstar, Inmarsat, Iridium
- Daten-Kommunikation: Orbcomm
- Satellitennavigation: GPS, GLONASS, COMPASS, Galileo
- Fernerkundung: Disaster Monitoring Constellation, RapidEye