KI und Fernerkundung
Allgemeines
Künstliche Intelligenz (KI) ist ein Teilgebiet der Informatik. Sie erforscht Mechanismen, die intelligentes menschliches Verhalten simulieren können. Das beinhaltet zum Beispiel, eigenständig Schlussfolgerungen zu ziehen, angemessen auf Situationen zu reagieren oder aus Erfahrungen zu lernen.
Sehr abstrakt ordnen sich KI-Forscher zwei Richtungen zu: der „schwachen“ und der „starken“ KI. Die „starke“ KI formuliert, dass KI-Systeme die gleichen intellektuellen Fertigkeiten wie der Mensch haben oder ihn darin sogar übertreffen können. Die „schwache“ KI ist fokussiert auf die Lösung konkreter Anwendungsprobleme auf Basis der Methoden aus der Mathematik und Informatik, wobei die entwickelten Systeme zur Selbstoptimierung fähig sind. Dazu werden auch Aspekte menschlicher Intelligenz nachgebildet und formal beschrieben bzw. Systeme zur Simulation und Unterstützung menschlichen Denkens konstruiert.
Mit Hilfe der KI wollen Forscher und Anwender mehr und mehr dazu kommen, Wissen über die sich wandelnde Erde aus dem reichhaltigen Schatz verfügbarer Erdbeobachtungsdaten herauszufiltern. Die bei der Fernerkundung anfallenden Datenmengen sind mittlerweile so enorm, dass die benötigten Informationen in Zukunft nur noch mit KI-Verfahren gewonnen werden können.
Einsatz in der Fernerkundung
Erdbeobachtungssatelliten und zunehmend auch Forschungsdrohnen sammeln große Mengen von Umweltdaten. Allein die Europäische Raumfahrtagentur (ESA) produziert beispielsweise mit den Sentinel-Satelliten täglich Datenmengen in der Größenordnung von mehreren Millionen hochauflösenden Bildern. Diese stehen Open Access zur Verfügung und werden für verschiedenste Zwecke ausgewertet. Aber nicht nur bestimmte Phänomene können erfasst, sondern auch neue Erkenntnisse und bisher unbekannte Zusammenhänge sollen in den Daten erkannt werden. So kann die Beobachtung eines Gebiets über einen längeren Zeitraum bestimmte Veränderungen sichtbar machen, die mit politischen Entscheidungen zusammenhängen oder zu solchen führen.
Maschinelles Lernen als Teilgebiet der KI wird immer häufiger zur automatischen Auswertung der Fülle von Daten aus der Fernerkundung eingesetzt, um komplexe Umweltsysteme besser zu verstehen und zu managen. Die in Wissen überführten Daten aus dem All sollen Entscheidungsträgerinnen und Entscheidungsträgern am Boden beispielsweise helfen, nachhaltige und lebenswerte Städte zu gestalten. Auch kann KI-Einsatz z. B. Wettervorhersagen und Klimamodellierungen verbessern, um damit beispielsweise bessere Vorhersagen für Überflutungen oder Dürren zu treffen.
Wasserressourcen können überwacht werden, die Messung von Meeres- und Luftverschmutzung oder das Notfallmanagement bei Naturkatastrophen kann optimiert werden. Ein weites Feld mit verstärktem Einsatzpotential ist die Präzisionslandwirtschaft. KI findet auch in der Forstwirtschaft Anwendung, z.B. bei der drohnenbasierten Überwachung von Schädlingsbefall oder bei Ernte, Logistik oder illegalem Holzeinschlag oder der Vorhersage und frühzeitigen Eindämmung von Waldbränden.
In Deutschland befasst sich beispielsweise das Zukunftslabor „AI4EO“ – geleitet von der TUM in Zusammenarbeit mit dem DLR – mit der Entwicklung von KI-Technologien für die Erdbeobachtung. So sollen etwa Satelliten-Daten mithilfe von intelligenter Big-Data-Analyse die globale Urbanisierung, die Ernährung der Weltbevölkerung oder das Management von Naturgefahren modellieren.
Offene Fragen
Neben vielen Vorteilen, bringen KI-Anwendungen aber auch technische sowie ethische und rechtliche Herausforderungen mit sich. Mit dem verstärkten Einsatz von KI sind grundsätzliche Fragen, wie die Verlässlichkeit und Genauigkeit von Aussagen aus KI-Systemen verbunden.
Technisch wird ein weit verbreiteter Einsatz von KI durch die Datenzugänglichkeit und den Aufbau und die Validierung der Trainingsdaten limitiert. Außerdem bringt das Algorithmendesign Unsicherheiten durch Fehler und Bias (Verzerrungseffekte) mit sich, was zu rechtlichen und ethischen Problemen führen kann. Bei komplexen Algorithmen in der Umweltfernerkundung stellt sich insbesondere im öffentlichen Sektor die Frage der Nachvollziehbarkeit und Transparenz von getroffenen Entscheidungen. Auch Verantwortungs- und Haftungsfragen sind bislang ungeklärt.
Wenn Informationen öffentlich zugänglich sind, könnten sie zum Beispiel dabei helfen, Städte nachhaltiger und lebenswerter zu gestalten oder Slums besser zu managen. Hier ist es wichtig, den Nutzen öffentlicher Daten gegen einen möglichen Missbrauch abzuwägen. Auch der Schutz der privaten Informationen ist wegen der immer höheren Auflösung der Bilder ein wichtiges Thema.
Zwar bezieht sich die europäische Datenschutzgrundverordnung auf die Verwendung personenbezogener Daten, dies geschieht allerdings sehr allgemein. Es muss rechtliche eindeutig geklärt werden, wie mit den hochauflösenden Daten der Fernerkundung umzugehen ist. Die zwei Trends von zunehmender Verfügbarkeit von Satellitenbildern mit sehr hoher räumlicher und zeitlicher Auflösung und die Auslagerung der rechenintensiven Bildanalyse haben in Verbindung mit den in naher Zukunft absehbaren Verbesserungen der Gesichtserkennungstechnologie und anderer Bilderkennungssoftware das Potenzial für die Identifizierung von Personen und bergen damit Auswirkungen auf Privatsphäre, Datenschutz und ethische Risiken. Im Vordergrund stehen auch ungeklärte Verantwortungs-, Haftungs- und Abhängigkeitsfragen.
Weitere Informationen: