THEORY FOR GOES ORBIT

Q: Why are GOES 35,800 km from the center of the earth so that they are in geosynchronous orbit???

There are two relevant forces involved in this problem:

- 1. gravitational force of attraction between any two objects, given by:
- 2. centrifugal force an outward-directed force that normally balances the inward-directed centripital force,

given by: . These forces are required to help maintain the circular trajectory of an object.

In our situation of a satellite in geosynchronous orbit, the outward-directed centrifugal force balances the inward-directed gravitational force. Hence, for a steady-state orbit, the force balance becomes:

or (1)

Solving for v_s , the tangential velocity of the satellite, from (1) yields:

(2)

Notice, that in (2), the mass of the satellite does not appear.

REALITY CHECK – what are we trying to solve for?????

OK, so what is v_s ?

The tangential velocity of the satellite (v_s) is related to its orbital period, T through:

or or (3)

Eliminating between (3) and (2) gives:

Solving for the orbital period, T, gives:

(4)

OK, we still do not know r.....but we're getting closer. To find r, we still need to determine what T is.....

What is the constraint, in terms of angular velocity, on the satellite if it is to be in a geosynchronous orbit??????

Yes, where ω_s and ω_e are the angular velocities of the satellite and earth, respectively.

The angular velocity (from basic physics) for the satellite is:

or

(5)

but from (3), recall that or Substituting (6) into (5) gives:

(6)

or solving for *T*,

(7)

recall that so (7) can be rewritten as:

(8)

From (8), we now know the satellites orbital period, T.

By substituting (8) into (4) to eliminate T^2 we get:

or solving for r yields:

(9)

We know:

$$G = 6.67 \text{ x } 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$$

 $m_e = 5.97 \text{ x } 10^{24} \text{ kg}$
 $\omega_e = 7.29 \text{ x } 10^{-5} \text{ rad s}^{-1}$

Hence, substituting the above constants into (9) gives:

R = 35,786 km for GOES

There it is.....

