Deutscher Wetterdienst

Exploitation of Remote Sensing Techniques by the DWD

for Early Warning of Natural Hazards

Wolfgang Benesch

Deutscher Wetterdienst (DWD)

Remote Sensing Division

Email: Wolfgang.Benesch@dwd.de

Legislative + legal framework, organizational role

DWD is the governmental national meteorological service (NMS) of Germany

under responsibility of the Federal Ministry for Transport, Housing and Urban Development

§ Statutory tasks of DWD

- Meteorological safeguarding of aviation and shipping
- Issue of official warnings about dangerous weather phenomena
- Monitoring of the atmosphere for radioactive trace elements and forecasting of their spreading
- **▶DWD co-operates with the German Committee for Disaster Reduction** within the International Strategy for Disaster Reduction (ISDR)
- DWD represents Germany at international organizations,
 e.g. the World Meteorological Organization (WMO), EUMETSAT etc.

Natural hazards caused by meteorological events some examples:

The space-based component of the Global Observing System of the World Meteorological Organization (WMO)

Operational meteorological satellites in:

- geostationary orbit,
- polar orbit

÷

research satellites

with relevance for environmental monitoring

courtesy:

World Meteorological Organization (WMO)

Advantages of meteorological and environmental satellites

Benefits in comparison to other observing systems:

a global system

spatial coherent information (area covering, nearly without gaps)

data from otherwise data-sparse areas

same observing system for different parts of the globe

nearly continuous observations

data generally available, at least for official duty use

An example of natural hazards as seen by operational meteorological satellites

The role of remote sensing for support to risk management:

Early Warning

Weather forecast up to 10 days ahead: numerical weather prediction (NWP) model dominate

The role of remote sensing for support to risk management:

II. Monitoring of severe weather events - support to risk reduction

Support to risk reduction management, 2-3 hours ahead of a severe event: "nowcasting"

nowcasting: mixed method: forecaster (specific nowcasting techniques) + latest computer runs

Availability of Warnings

Warnings via Internet to the General Public, freely available to everybody

WARNING OF SEVER WEATHER: SEVERE THUNDERSTORMS WITH HEAVY RAIN, HAIL AND INTENSIVE GUSTS

for district Bernkastel Wittlich

valid from Tuesday, 10 June 2003, 16:30 hrs until Tuesday, 10 June 2003, 24:00 hrs

issued by Deutscher Wetterdienst, 10/06/03, 16:00

Locally sever thunderstorms with intensive gusts up to 100 km/h and rain with more than 25 mm within short time.

Potential impact of the expected severe weather.

- locally flashes with danger
- sudden flooding of streets and cellars
- overrunning brooks and small rivers
- locally landslides
- locally severe damage from hail
- isolated falling trees and damage of roofs
- crashing down of tiles, branches and others

Availability of Warnings

to disaster reduction services, e.g. via Internet to special user groups

International exchange of warnings

- bilateral exchange of warnings of severe weather
 with regional meteorological services
 of neighboring countries
- EUMETNET Programme "EMMA"
 (European Multi-service Meteoriological Awareness Programme)

Other important use of space technology

Data relay function of meteorological satellites:

geostationary satellites:

- transmission of data of automatic weather stations e.g. from isolated areas, ships, buoys, aircraft, etc
- Search and Rescue (S&R) signals

polar orbiting satellites:

- location and transmission of crash signals

Climatology:

(GPCC: Global Precipitation Climatology Centre)

- global monthly means of precipitation (DWD contributes to the GPCC)
- DWD is the host of the EUMETSAT "Satellite Application Facility for Climate Monitoring"

fractional cloud cover

monthly means

← Feb. 05 Feb. 06 →

Note: also data of navigation satellites (GPS) are used for meteorological purposes

Outlook

Satellite programmes of EUMETSAT

> fully approved programmes:

geostationary:

Meteosat Second Generation (MSG)

(4 satellites in total): up to ~ 2019

polar orbiting:

EUMETSAT Polar System (EPS)complementary with the NOAA systems

(METOP- A, - B, - C): 2006 - ~ 2020

Jason-2: 2008 - ~ 2013

(25% EUMETSAT contribution)

> under preparation:

Meteosat Third Generation (MTG) ~ 2015 up to ~ 2030

first planning has started:

Post-EPS:

from ~ 2018/19 onwards

Jason: oceanographic altimeter mission

Summary

- ~ 85 % of natural hazards are caused by meteorological events (according to WMO)
- meteorological satellites play an unique role in support to early warning and natural hazard risk reduction management:
- as input data for numerical forecasts up to 10 days for early warning
- for specific warnings on precise location, time and intensity of high-impact weather events some hours ahead
- for monitoring of climate conditions and climate variability

Conclusions (I)

- the global system of meteorological satellites is co-ordinated by WMO (a specialised agency of the United Nations) in co-operation with other international institutions
- this global satellite system (+ extensions) will be the <u>backbone</u> of a <u>Global Earth Observation System of Systems (GEOSS)</u> continuous benefit for early warning of natural hazards and risk reduction
- essential:
 - the resulting data / products
 - the <u>communication capabilities</u> of the operat. met. <u>satellite operators</u> (e.g. EUMETCast of EUMETSAT → cornerstone for GEONetcast)

Conclusions (II)

- > the operational meteorological satellite systems provide support to:
 - multi-hazard events
 - early warning and monitoring
 - global, regional and global multi-disciplinary purposes
- taking all these advantages into account:
 - all efforts have to be undertaken by political decision takers that the global satellite system will be secured in the future
 - with all the required future improvements

Thanks
for your
attention

Hurricane KATRINA, 28 June.2005, 17 UTC, NASA EOS Terra, MODIS (courtesy: MODIS Rapid Response Project NASA/GSFC)